Companies - Looking for trained engineers?

Get Trained
€ EMBISYS LABS o e
ey to success Get Employed
About Embisyslabs @ Bangalore

Embisys Labs is the Embedded Systems consultancy that contributes the Training and development in the
areas of Embedded Technologies. We strive for perfection in whatever we do by providing high quality
Training, Development and Solutions in Embedded Systems,Embedded Formware, Embedded linux and Linux
Device Drives on various embedded target board for our Engineers and customers. At the company level
Embisys Labs focuses on innovative embedded project like Embedded 10T, Robotics, Embedded Linux, Linux
device drivers projects .

Maximum 6 to 8 Participants in one Batch.
Indivisual Attention to each Participant.

High Quality practical/application Oriented Training.
Genuine Placement Assistance.

ARM 7 Controller for Embedded C Practicals.
Cortex-A8 Processor for Embedded Linux Practicals.
Beaglebone and Raspberry-Pi for Driver Practicals.
Flexible and Convenient time Slots for Classes.
Experience and co-operative Trainers.

VVVVYVYVVYVYYY

Training and Practicals Process

Classes 5-Days a week for Weekdays Batch
Theory(1 1/2 -2 hrs.) and practical (3 hrs.)
Classes 2-Days for a Weekend Batch(Sat & Sun)
Theory(2 1/2 -3 hrs) and practical (3hrs.)

Daily theory and lab assignments

Module wise theory and lab exams

Interviews & Project Guidance

Repeatation classes will be conducted as required.

VVVVVYVYVYY

Software development methodologies and Project life Cycle

Stage 1

Planning

Stage 2

Analysis

Project
The Software
Development _ M t
it?%ir% Life Cycle anagemen

Integration £ 5z

Stage
Stage 4) Desiggn e
Implementation

MODULE 1: C AND DATA STRUCTURE PROGRAMMING

CHI1. GETTING STARTED
» Why C Programming Language
» History & Features
» Compilation Model
» How to Compile & Run a C program
» Strategy of Desinging a Program
CH2. FUNDAMENTALS OF PROGRAMMING
» Variables & Constants
» Keywords & Data Types
» ldentifires & Rules
» 1/0 Functions
CH3. OPERATORS AND CLASSIFICATIONS
Arithmetic Operators
Bitwise Operators
Logical Operators
Increment Operators
Decrement Operators
Relational Operators
Conditional Operators
CH4. CONTROL FLOW STATEMENTS
» Sequential statements
» Decision making statements
> if else,nested-if
» break,switch
CHS5. LOOPING STATEMENTS
» For Looping
» While Looping
» Do—While Looping
» Continue Looping
CH6. C PRE-PROCESSOR
» File inclusion
» Macro substitution
» Conditional Compilation
> #ifde, #ifndef
CH7. ARRAYS AND STRING
» Definition and Declaration of Array
» Definition and Declaration of String
» Memory Layout &accessing Array Elements
» String Library Functions
» Two dimensional Arrays
CHS8. POINTERS [PART 1]
Definition &Declaration of Pointer
Indirect Access using Pointers
Pass by Reference
Rela. b/w Arrays and Pointers
Type Casting
Pointer to an Array
Array of Pointers
. FILE INPUT/OUTPUT
System Calls vs. Library Calls
I/O Library Functions

VVVVVYVYY

@)
s
VaEVYVVVVY

CH9. FUNCTIONS AND ITS TYPE
Why Functions ?
Function Declarations
Function Prototypes
Returning a Value or Not
Arguments and Parameters
Function Pointers
Recursion and Recursive function
. SCOPE and LIFETIME OF VARIABLES
Block Scope
Function Scope
File Scope
Program Scope
The auto Specifier
The static Specifier
The register Specifier
The extern Specifier
The Const Modifier
The Volatile Modifier
. POINTERS [PART 2]
Dynamic Storage Allocation -
malloc(),calloc(),realloc(),free()
Functions Returning a Pointer
An Array of Character Pointers
Two Dim.Arrays vs. Array of Pointers
Command Line Arguments
Pointers to Pointers
Use of Function Pointers
. SERCHING &SORTING
Linear Searching
Binary Searching
Bubble sorting
Selection Sorting
. STRUCTURES
Fundamental Concepts
Describing a Structure
Creating Structures
Operations on Structures
Functions Returning Structures
Passing Structures to Functions
Pointers to Structures
Array of Structures
Functions Returning a Pointer to a Structure
Structure Padding
pragma Definition and its use
: STRUCTURE RELATED (UNION)
Why Union is called Memory Saving Concept
Difference between Union and Structure
Typedef - New Name for an Existing Type
Bit Fields Memory Saving Concept

VVVVEVVVVVVVVVVVEVVVVESVYVYVYVYVVVYVVYVEVYVYVVVVVVVVVZVVYVVVYYYVYY

» Standard Input/Output Descriptors » Enumerations and its use

» fopen(),fread(),fwrite(),fclose() » Const and Volatile Modifier

» Character Input vs. Line Input » Volatile and Const Volatile Modifier
» fscanf(),fprintf(),fclose()

» fgtes(),fputs(),fgetc(),fputc()

MODULE 2: DATA STRUCTURE USING C PROGRAMMING

CH1. INTRODUCTION TO DATA STRUCTURE CH4 . CH4: LINK LIST PROGRAMMING
» Why data structure ? » Singly link lists
» Definition and Classification » Circular link lists
» Primitive and Non Primitive » Double link list
CH2: STACK PROGRAMMING » Implement Below Assignment for All types
» What is Stack? . .
» Push operatins insert an item from top end of of Link List
» Insert an item from Front End of Link Lis
Stack ; :)
» Pop operatins delete an item from top end of > Insertan 1t.em from Rea-r End Of,Lmk LISF
Stack » Insert an item at Specific Postion of Link
» Implementation of Stack using Array Pointer List
» Implementation of Stack using Pointer » Delete an item from Front End of Link List
» Delete an item from Rear End of Link List
CH3. CH3: QUEUE PROGRAMMING » Delete an item at Specific Postion of Link
» What is Queue? List
» Insert an item from front end of Queue » Reverse the link list
» Delete an item from rear end of Queue > Find the middle node of link list
» Implementation of Queue using Array Pointer
» Implementation of Queue using Pointer

nments in Class Room

C and Data Structures Hands-on Assi

3. Two Mini Projects on C and Data Structure Programming Modules :
4. Class Room Test based on C and Data Structure Programming Modules

MODULE 3: ARM7TDMI-S and EMBEDDED C PROGRAMMING

CH1. INTRODUCTION TO ARM PROCESSOR
» Intro. to Cortex-A and Cortex-M Series CH7. ARM LPC2148 UART
Controller » Difference between UART/USART
» Why Embedded C Programming » UART module overview
» Why Assembly Programming » UART Frame structure
» Difference betwwen C And Embedded C » UART Baudrate Calculation
Programming » Sending and receiving data using UART
CH2. ENVIRONMENT SETUP AND ITS USE » UORBR (UARTO Receive Buffer Register)
» IDE installation (Keil uVision / ARM GCC) » UOTHR (UARTO Transmit Holding Register)
» Downloading and installation of IDE, Flash » UODLL and UODLM (UARTO Divisor Latch
Magic Registers)
> Setting up hardware (development board) » UOLCR (UARTO Line Control Register)
CH3. ARM ARCHITECTURE [LPC2148] CHS8. LPC2148 PWM PROGRAMMING
» Overview of ARM?7 architecture » PWM functionality and applications
» Features of LPC2148 microcontrollers » LPC2148 supports 2 types of PWM

Pin configuration and pin descriptione
Memory map of LPC2148

Flash memory and RAM details
Internal block diagram and functional
overview

CH4. ARM GPIO PROGRAMMING
Understanding ports and pins
Configuring pins as input/output

Pin Function Select Registers

Fast and Slow GPIO Registers
IOxPIN (GPIO Port Pin value register)
IOXSET (GPIO Port Output Set register)

YV VVYV

[IOxCLR (GPIO Port Output Clear register
.LPC2148 INTERRUPT HANDLING

Interrupt controller in LPC2148

Configuring and enabling interrupts

Writing ISR (Interrupt Service Routine)

Fast IRQ (highest priority)

Non-Vectored IRQ (low priority

Vectored IRQ (medium priority)

@)
VVVVVVEVVVVVVVV

CH6. LPC2148 TIMER / COUNTER
Timer features in LPC2148

Timer Counter(TC) and Prescale
Register(PR)

What is a Match Register

What are Capture Registers

Prescale (TxPR) Related Calculations
Setting up & configuring Timers

VVVYVY VYV

>

IOxDIR (GPIO Port Direction control register)

7 match registers inside the PWM block
Configuring and Initializing PWM
PWM Prescale (PWMPR) Calculations
DC Motor Speed Control Using PWM
LED Dimming Using PWM

. LPC2148 ADC PROGRAMMING
ADC features in LPC2148

Steps for Analog to Digital Conversion
ADxGDR (ADCx Global Data Register)
ADOSTAT (ADCO Status Register)
ADxCR (ADC Control Register)

CH 10. LPC2148 12C PROGRAMMING
I2C overview

[2C-Bus Configuration

[2C Operating modes

[2C Master Transmitter mode

[2C Master Transmitter mode

[2C Implementation and operation

[2C Register description

I2C Programming

@)
s
VVVVYVeVVVVYV

VVVVVVVYY

CH 11. LPC2148 SPI PROGRAMMING
SPI overview

SPI data transfer format

SPI data to clock phase relationship
SPI Master operation

SPI Slave operation

SPI Register description

SPI Programming

VVVVVYVY

ADCO has 6 channels &ADC1 has 8 channels

Embedded C and ARM7 Hands-on Assi

2. All Peripherials Proram on ARM Board (LPC 2148

nments in Class Room

MODULE 4: UNIX and LINUX SYSTEM PROGRAMING

CH1. INTRODUCTION TO UNIX/LINUX
» Histoty of Unix/Linux
» Linux Layered Architecture
» Type of Kernels
» Micro and Monolithic kernel
» Different types of kernel structure

» Linux Bootup Sequence
CH2. FILE SYSTEM MANAGEMENTS
» File Systems — VFS
» File Systems Layouts
» Super Block & Inode Block
» Inode block Structure
» Device Special Files

CH4. PROCESS MANAGEMENTS

Program and Process

Process Control Block (PCB)

States Of Process

Mode of Execution

User mode and Kernel mode

Context Switching

Scheduling & Priority

CH5. PROCESS RELATED PROGRAMMING
» Process Creation by fork() amd vfork()
» Why fork() not vfork()
» Creation and Destroying Zombie Process
» Creation of Orphan Process
» wait() and waitpid() calls

VVVVVYVYY

Types of File
File descriptor table
System calls Sequence
System Vs Function Calls
File related System Calls
open(),read(),write(),close()
stat(),Istat(),dup() etc.
CH3. FILE LOCKING PROGRAMMING
» File Control Operations
» Types of File Locking
» Advisory and Mandatory File locking
» fentl() and flock()calls

VVVVVYVYY

» exit() and exec() ,sleep() calls
» Creating , synchronizing and performing
multiprocessing concepts

» Setting and changing nice value and Prority no.
CH6:MEMORY MANAGEMENTS AND MMU
Memory Policy and Hirarchy
Memory allocation Technique
Physical memory & Virtual Memory
Paging & Demand paging
Memory Mapping using TLB
Swap in & Swap out
Internal & External Fragmentation

VVVVVVY

MODULE 5: LINUX INTERNALS AND IPCs(INTER PROCESS COMMUNICATION)

CH1. THREADS AND MULTI-THREAD CONCEPTS
Threads on different O.S

Why Threads in Linux

Threads Vs Process

Thread APIs

Creation of Multithreading

Performig Multiple operation using multi-
threading

CH2. SIGNALS VS. INTERRUPTS

Sources of Signals

Diffrents type of Signals

Actions of Signals

Receiving a Signal

Handling a Signal

Signal System Calls

VVVVVYY

A\ 7

YV VYV

CH3. USER AND DAEMON PROCESS
» Creating a Daemon Process
» Characteristics of a Daemon
» Writing and Running Daemon

CH4 . PRIMITIVE INTERPROCESS COMM (IPCS)
» PIPES
» Creation of Half and Full-duplex Pipe
» Half and Full-duplex communication
» FIFO
CH5.SYSTEMS V IPCs
» Shared Memory
» Message Queues
» Semaphores
CH6 . NETWORK AND SOCKET PROGRAMMING
Description of ISO/OSI Model
Types of IP Classes (A,B,C,D and E)
Configuring IP address on Systems
Network addresses and Host addresses
Types of Socket
UDP Connectionless Oriented Socket
TCP/IP Connection Oriented Socket
Iterative Server-Client Programming
Concurrent Server- Client Programming
One Server and Many client Programming

VVVVVVVYYVYY

Linux Systems and IPCs Hands-on Assig

2. Two Mini Projects on Linux Systems Prog

nments in Class Room
1. More than Hundred Subjective Questions in Linux Systems Programming

3. Class Room Test based on Linux Systems Programming Modules

MODULE 6: KERNEL PORTING ON BEAGLE BONE BLACK

CH1. INTRODUCTION OF EMBEDDED LINUX
» Genesis of Linux project
» Embedded hardware for Linux systems
» Criteria for choosing the hardware
CH2.TOOLCHAIN AND SETUP
What is Toolchain
Toolchain Components
Build Systems for Toolchain
Toolchain Setup Environment
Toolchain compilation and usage
. BOOTLOADER AND COMPILATION
What is Loader
What is Bootloader
1st and 2nd Stage Bootloader

CH

U-Boot Commands Lists

Bootloader Cross-Compilation
Downloading on Target board
Bootloader commands and usage,
Bootloader code customization, U-Boot.
U-Boot Image for Target Board

VVYVVVVVVVVV¥YVYYVYVYY

U-Boot Bootloader Porting on New Hardware.

CH4 . LINUX KERNEL AND COMPILATION
Browsing Linux Kernel Source
Visualizing Kernel Source Tree
Cross-Compilation of Kernel Source
Generating Kernel Image(ulmage or zImage)
Cross Compiling kernel with rootfs
Cross Compiling Kernel without rootfs
CHS5 . NFS AND TFTP SETUP ON SYSTEM
» Configuring NFS on Host Platform PC
» Configuring TFTP on Host Platform PC
CH6 . COMPILED IMAGES ON TARGET BOARD.
» Downloading and booting kernel image using
rootfs over NFS
» Downloading and booting kernel image over
TFTP

VVVYVYYVYYVY

CH7 . PROGRAMMING FOR TARGET BOARD
» User Level Application Programming
» Device Driver Programming
» GPIO Interfacing Programming

MODULE 7: LINUX CHAR DEVICE DRIVER AND KERNEL PROGRAMMING

CH1: AN INTRO. TO DEVICE DRIVERS

» Role of the Device Drivers

» Splitting the kernel

» Classes of devices and modules

» Kernel Architecture or Model
CH2:BUILDING AND RUNNING MODULES
Types of Modules in the kernel
Writing Your first kernel module
Module Related Commands
Kernel Module vs Applications
User space vs Kernel space
Compiling Modules
Loading and Unloading Modules
Module Parameters

VVVVVVVY

@)
s
oo

: CHAR DEVICE DRIVERS

Major and Minor Numbers

The Internal Representation of Device
Numbers

Allocating and Freeing Device Numbers
File Operations Data structure

Driver methods and Function Pointers
Char Device Registration

The Cdev Structure

The file and inode Structure

Manual Creation of Device Files
Automatic Creation of Device Files

VVVVVVVY VY

CH

CH4: MEMORY ALLOCATION TECHNIQUE
» The Real Story of kmalloc
» The Flags Argument
» Memory zones
» kmalloc and Friends
CH5: ADVANCED CHAR DRIVER OPERATIONS
Inpout/Output Control (ioctl)
User space, the ioctl system call
The ioctl driver method
Choosing the ioctl Commands
Using the ioctl Argument
NCURRENCY AND RACE CONDITION
Concurrency and its Managements
Semaphores and Mutexes
Linux Semaphore Implementation
Introduction to the Semaphore API
Spinlocks Implementation
Introduction to the Spinlock API
Spinlocks and Atomic Context
: INTERRUPT AND INTERRUPT HANDLING
The Definition and Role of Interrupt
Installing an Interrupt Handler
Implementing a Handler
Handler Arguments and Return Value
Installing a Shared Handler
Top and Bottom Halves
Tasklets and Workqueues mechanisms

6:C

NVVVVVVVOVVYVYYVYY

CH

VVVVVYVYY

Device Driver and Bea

nments in Class Room

1. Subjective Questions in Linux Device Driver Programming

2. Case Study on Linux Device Driver and Beaglebone Black
3. Class Room Test based on Linux Device Driver Modules

CH1: DIFFERENCE BETWEEN GPOS AND RTOS
» Introduction and Overview
» Components O.S
» Monolithic Vs Microkernel Architecture
CH2: REAL TIME MULTITASKING
» Task Basics Structure
» Task Control Block
» Task Creation
» Task States
» Task Status
CH3: INTER TASK COMMUNICATION(ITCs)
» Shared Memory
» Message Queues
» Pipes

CH4: SEMAPHORES and SYNCHRONIZATION
Synchronization Problem

Binary Semaphore

Mutex Semaphore

Mutual Exclusion Problem

Priority Inversion
Priority Inheritance

VVVVVYY

CH5: INTERRUPT AND EXCEPTION
What is Interrupt and Signal
What is Exception

What is signal Handler

What is Exception Handler

YV VYV

Email us: info@embisyslabs.com

www.embisyslabs.com
Contact us:+91-9972257855

mailto:info@embisyslabs.com

